Effect of a magnetic field up to 9 T on the temperature dependence of the pseudogap in YBa2Cu3O7–δ films
DOI (Low Temperature Physics):
https://doi.org/10.1063/10.0042157Ключові слова:
high-temperature superconductors, YBCO films, excess conductivity, fluctuation conductivity, magnetic field, coherence length, pseudogapАнотація
Проаналізовано вплив магнітного поля B до 9 Тл вздовж осі с (B ‖ с) на питомий опір ρ(T), флуктуаційну провідність σʹ (T) та псевдощілину Δ*(T) у тонких плівках YBa2Cu3O7–δ з критичною температурою надпровідного переходу Tc = 88,8 К. На відміну від попередньої роботи (Low Temp. Phys. 51, 1061 (2025) [Fiz. Nyzk. Temp. 51, 1180 (2025)]), де магнітне поле було спрямоване вздовж площини ab (B ‖ ab), вплив поля на зразок сильніший завдяки внеску як спін-орбітального, так і зеєманівського ефектів. Як і очікувалося, магнітне поле не впливає на ρ(T) у нормальному стані. Однак, при надпровідному переході магнітне поле В різко збільшує питомий опір ρ(T), ширину надпровідного переходу ΔTc та довжину когерентності вздовж осі c, ξc(0), але водночас зменшує як Tc, так і діапазон надпровідних флуктуацій ΔTfl. Флуктуаційна провідність виявляє перехід при характерній температурі T0: від тривимірної теорії Асламазова–Ларкіна (3D–AL) поблизу Tc до двовимірної теорії флуктуацій Макі–Томпсона (2D–MT). Проте при B = 1 Tл внесок 2D–MT повністю пригнічується, і вище T0 залежність σʹ (T) несподівано описується внеском 2D–AL флуктуацій, що вказує на формування двовимірної вихрової решітки в плівці під дією магнітного поля. Виявлено, що температура переходу BEC–BCS, Tpair, яка відповідає максимуму залежності Δ*(T), зміщується в область нижчих температур зі збільшенням B, а максимальне значення Δ*(Tpair) зменшується в полях B > 5 T. Встановлено, що зі збільшенням поля низькотемпературний максимум поблизу T0 розмивається та зникає при B > 1 T. Крім того, вище температури Гінзбурга TG, для B > 1 T, на Δ*(T) при Tmin з'являється мінімум, який стає дуже виразним з подальшим збільшенням B. Внаслідок цього загальне значення Δ*(TG) помітно зменшується, найімовірніше, через ефект розриву пар. Водночас ΔТfl та ξс(0) різко зростають приблизно в три рази зі збільшенням B вище 1 T. Отримані результати підтверджують можливість формування вихрового стану в YBa2Cu3O7–δ магнітним полем та його еволюцію зі збільшенням B.
Посилання
A. A. Kordyuk, “Pseudogap from ARPES experiment: Three gaps in cuprates and topological superconductivity,” Low Temp. Phys. 41, 319 (2015) [Fiz. Nizk. Temp. 41, 417 (2015)]. https://doi.org/10.1063/1.4919371
J. Gao, J. W. Park, K. Kim, S. K. Song, H. R. Park, J. Lee, J. Park, F. Chen, X. Luo, Y. Sun, and H. W. Yeom, “Pseudogap and weak multifractality in 2D disordered mott charge-density-wave insulator,” Nano. Lett. 20, 6299 (2020). https://doi.org/10.1021/acs.nanolett.0c01607
J. L. Tallon, J. G. Storey, J. R. Cooper, and J. W. Loram, “Locating the pseudogap closing point in cuprate superconductors: Absence of entrant or reentrant behavior,” Phys. Rev. B 101, 174512 (2020). https://doi.org/10.1103/PhysRevB.101.174512
Y. Y. Peng, R. Fumagalli, Y. Ding, M. Minola, S. Caprara, D. Betto, M. Bluschke, G. M. De Luca, K. Kummer, E. Lefrançis, M. Salluzzo, H. Suzuki, M. Le Tacon, X. J. Zhou, N. B. Brookes, B. Keimer, L. Braicovich, M. Grilli, and G. Ghiringhelli, “Re-entrant charge order in overdoped (Bi,Pb)2.12Sr1.88CuO6+δ outside the pseudogap regime,” Nat. Mater. 17, 697 (2018). https://doi.org/10.1038/s41563-018-0108-3
D. Chakraborty, M. Grandadam, M. Y. Hamidian, J. C. S. Davis, Y. Sidis, and C. Pépin, “Fractionalized pair density wave in the pseudogap phase of cuprate superconductors,” Phys. Rev. B 100, 224511 (2019). https://doi.org/10.1103/PhysRevB.100.224511
I. Esterlis, S. A. Kivelson, and D. J. Scalapino, “Pseudogap crossover in the electron-phonon system,” Phys. Rev. B 99, 174516 (2019). https://doi.org/10.1103/PhysRevB.99.174516
G. Yu, D.-D. Xia, D. Pelc, R.-H. He, N.-H. Kaneko, T. Sasagawa, Y. Li, X. Zhao, N. Barisic, A. Shekhter, and M. Greven, “Universal precursor of superconductivity in the cuprates,” Phys. Rev. B 99, 214502 (2019). https://doi.org/10.1103/PhysRevB.99.214502
V. M. Loktev, R. M. Quick, and S. G. Sharapov, “Phase fluctuations and pseudogap phenomena,” Phys. Rep. 349, 1 (2001). https://doi.org/10.1016/S0370-1573(00)00114-9
R. Haussmann, “Properties of a Fermi liquid at the superfluid transition in the crossover region between BCS superconductivity and bose–einstein condensation,” Phys. Rev. B 49, 12975 (1994). https://doi.org/10.1103/PhysRevB.49.12975
O. Tchernyshyov, “Non-interacting cooper pairs inside a pseudogap,” Phys. Rev. B 56, 3372 (1997). https://doi.org/10.1103/PhysRevB.56.3372
J. R. Engelbrecht, A. Nazarenko, M. Randeria, and E. Dagotto, “Pseudogap above Tc in a model with pairing,” Phys. Rev. B 57, 13406 (1998). https://doi.org/10.1103/PhysRevB.57.13406
A. L. Solovjov, Pseudogap and local pairs in high-Tc superconductors, in Superconductors-Materials, Properties and Applications, edited by A. Gabovich (InTech, Rijeka, 2012), Chap. 7, p. 137.
V. J. Emery and S. A. Kivelson, “Importance of phase fluctuations in superconductors with small superfluid density,” Nature 374, 434 (1995). https://doi.org/10.1038/374434a0
M. Randeria, “Pre-pairing for condensation,” Nat. Phys. 6, 561 (2010). https://doi.org/10.1038/nphys1748
A. L. Solovjov and K. Rogacki, “Local pairs in high-temperature superconductors: The concept of pseudogap,” Low Temp. Phys. 49, 345 (2023) [Fiz. Nyzk. Temp. 49, 375 (2023)]. https://doi.org/10.1063/10.0017238
A. L. Solovjov and V. M. Dmitriev, “Fluctuation conductivity and pseudogap in YBCO high-temperature superconductors,” Low Temp. Phys. 35, 169 (2009) [Fiz. Nizk. Temp. 35, 227 (2009)]. https://doi.org/10.1063/1.3081150
B. P. Stojković and D. Pines, “Theory of the longitudinal and Hall conductivities of the cuprate superconductors,” Phys. Rev. B 55, 8576 (1997). https://doi.org/10.1103/PhysRevB.55.8576
S. Badoux, W. Tabis, F. Laliberté, G. Grissonnanche, B. Vignolle, D. Vignolles, J. Béard, D. A. Bonn, W. N. Hardy, R. Liang, N. Doiron-Leyraud, L. Taillefer, and C. Proust, “Change of carrier density at the pseudogap critical point of a cuprate superconductor,” Nature (London) 531, 210 (2016). https://doi.org/10.1038/nature16983
A. M. Gabovich and A. I. Voitenko, “Spatial distribution of superconducting and charge-density-wave order parameters in cuprates and its influence on the quasiparticle tunnel current,” Low Temp. Phys. 42, 863 (2016) [Fiz. Nizk. Temp. 42, 1103 (2016)]. https://doi.org/10.1063/1.4965890
L. Taillefer, “Scattering and pairing in cuprate superconductors,” Annu. Rev. Condens. Matter Phys. 1, 51 (2010). https://doi.org/10.1146/annurev-conmatphys-070909-104117
S. Dzhumanov and U. T. Kurbanov, “The coexisting of insulating and metallic/superconducting phases and their competing effects in various underdoped cuprates,” Modern Phys. Lett. B 32, 1850312 (2018). https://doi.org/10.1142/S0217984918503128
S. Dzhumanov and U. T. Kurbanov, “The new metal–insulator transitions and nanoscale phase separation in doped cuprates,” Superlat. Microstruct. 84, 66 (2015). https://doi.org/10.1016/j.spmi.2015.03.069
S. Wang, P. Choubey, Y. X. Chong, W. Chen, W. Ren, H. Eisaki, S. Uchida, P. J. Hirschfeld, and J. C. S. Davis, “Scattering interference signature of a pair density wave state in the cuprate pseudogap phase,” Nature Commun. 12, 6087 (2021). https://doi.org/10.1038/s41467-021-26028-x
S. F. Kivelson and S. Lederer, “Linking the pseudo-gap in the cuprates with local symmetry breaking: A commentary,” PNAS 116, 14395 (2019). https://doi.org/10.1073/pnas.1908786116
N. J. Robinson, P. D. Johnson, T. M. Rice, and A. M. Tsvelik, “Anomalies in the pseudogap phase of the cuprates: Competing ground states and the role of umklapp scattering,” Rep. Prog. Phys. 82, 126501 (2019). https://doi.org/10.1088/1361-6633/ab31ed
V. Mishra, U. Chatterjee, J. C. Campuzano, and M. R. Norman, “Effect of the pseudogap on the transition temperature in the cuprates and implications for its origin,” Nat. Phys. 10, 357 (2014). https://doi.org/10.1038/nphys2926
R. V. Vovk, Z. F. Nazyrov, G. Ya. Khadzhai, V. M. Pinto Simoes, and V. V. Kruglyak, “Effect of transverse and longitudinal magnetic field on the excess conductivity of YBa2Cu3–zAlzO7–δ single crystals with a given topology of plane defects,” Funct. Mater. 20, 208 (2013). https://doi.org/10.15407/fm20.02.208
B. A. Malik, G. H. Rather, K. Asokan, and M. A. Malik, “Study on excess conductivity in YBCO + xAg composites,” Appl. Phys. A 127, 294 (2021). https://doi.org/10.1007/s00339-021-04448-2
R. I. Rey, C. Carballeira, J. M. Doval, J. Mosqueira, M. V. Ramallo, A. Ramos-Álvarez, D. Sóñora, J. A. Veira, J. C. Verde, and F. Vidal, “The conductivity and the magnetization around Tc in optimally-doped YBa2Cu3O7–δ revisited: Quantitative analysis in terms of fluctuating superconducting pairs,” Supercond. Sci. Technol. 32, 045009 (2019). https://doi.org/10.1088/1361-6668/aafe93
A. L. Solovjov, R. V. Vovk, and K. Rogacki, “Unusual behavior of pseudogap in high-temperature superconductors under the influence of external factors. part I (review article),” Low Temp. Phys. 51, 1061 (2025) [Fiz. Nyzk. Temp. 51, 1180 (2025)]. https://doi.org/10.1063/10.0038990
P. G. De Gennes, Superconductivity of Metals and Alloys, W. A. Benjamin (Inc., New York, Amsterdam, 1966).
E. V. Petrenko, K. Rogacki, A. V. Terekhov, L. V. Bludova, Yu. A. Kolesnichenko, N. V. Shytov, D. M. Sergeyev, E. Lähderanta, and A. L. Solovjov, “Evolution of the pseudogap temperature dependence in YBa2Cu3O7–δ films under the influence of a magnetic field,” Low Temp. Phys. 50, 299 (2024) [Fiz. Nyzk. Temp. 50, 325 (2024)]. https://doi.org/10.1063/10.0025295
E. V. Petrenko, L. V. Omelchenko, Yu. A. Kolesnichenko, N. V. Shytov, K. Rogacki, D. M. Sergeyev, and A. L. Solovjov, “Study of fluctuation conductivity in YBa2Cu3O7–δ films in strong magnetic fields,” Low Temp. Phys. 47, 1050 (2021) [Fiz. Nizk. Temp. 47, 1148 (2021)]. https://doi.org/10.1063/10.0007080
P. Przyslupski, I. Komissarov, W. Paszkowicz, P. Dluzewski, R. Minikayev, and M. Sawicki, “Structure and magnetic characterization of La0.67Sr0.33MnO3/YBa2Cu3O7 superlattices,” J. Appl. Phys. 95, 2906 (2004). https://doi.org/10.1063/1.1646445
E. V. L. de Mello, M. T. D. Orlando, J. L. Gonzalez, E. S. Caixeiro, and E. Baggio-Saitovich, “Pressure studies on the pseudogap and critical temperatures of a high-Tc superconductor,” Phys. Rev. B 66, 092504 (2002). https://doi.org/10.1103/PhysRevB.66.092504
A. L. Solovjov, H.-U. Habermeier, and T. Haage, “Fluctuation conductivity in YBa2Cu3O7–y films of various oxygen content, II. YBCO films with Tc >> 80 K,” Low Temp. Phys. 28, 99 (2002) [Fiz. Nizk. Temp. 28, 144 (2002)]. https://doi.org/10.1063/1.1461921
B. Oh, K. Char, A. D. Kent, M. Naito, M. R. Beasley, T. H. Geballe, R. H. Hammond, A. Kapitulnik, and J. M. Graybeal, “Upper critical field, fluctuation conductivity, and dimensionality of YBa2Cu3O7,” Phys. Rev. B 37, 7861 (1988). https://doi.org/10.1103/PhysRevB.37.7861
E. Nazarova, A. Zaleski, and K. Buchkov, “Doping dependence of irreversibility line in Y1−xCaxBa2Cu3O7–δ,” Physica C 470, 421 (2010). https://doi.org/10.1016/j.physc.2010.03.002
B. P. Stojkovic and D. Pines, “Theory of the longitudinal and Hall conductivities of the cuprate superconductors,” Phys. Rev. B 55, 8576 (1997). https://doi.org/10.1103/PhysRevB.55.8576
F. Rullier-Albenque, H. Alloul, and G. Rikken, “High-field studies of superconducting fluctuations in high-Tc cuprates: Evidence for a small gap distinct from the large pseudogap,” Phys. Rev. B 84, 014522 (2011). https://doi.org/10.1103/PhysRevB.84.014522
W. Lang, G. Heine, P. Schwab, X. Z. Wang, and D. Bauerle, “Paraconductivity and excess Hall effect in epitaxial YBa2Cu3O7 films induced by superconducting fluctuations,” Phys. Rev. B 49, 4209 (1994). https://doi.org/10.1103/PhysRevB.49.4209
R. V. Vovk, N. R. Vovk, G. Ya. Khadzhai, I. L. Goulatis, and A. Chroneos, “Effect of praseodymium on the electrical resistance of YBa2Cu3O7–δ single crystals,” Solid State Commun. 190, 18 (2014). https://doi.org/10.1016/j.ssc.2014.04.004
R. V. Vovk, N. R. Vovk, G. Ya. Khadzhai, O. V. Dobrovolskiy, and Z. F. Nazyrov, “Effect of high pressure on the fluctuation paraconductivity in Y0.95Pr0.05Ba2Cu3O7–δ single crystals,” Curr. Appl. Phys. 14, 1779 (2014). https://doi.org/10.1016/j.cap.2014.10.002
R. V. Vovk, G. Ya. Khadzhai, and O. V. Dobrovolskiy, “Resistive measurements of the pseudogap in lightly Pr-doped Y1–xPrxBa2Cu3O7–δ single crystals under high hydrostatic pressure,” Solid State Commun. 204, 64 (2015). https://doi.org/10.1016/j.ssc.2014.12.008
R. Peters and J. Bauer, “Local origin of the pseudogap in the attractive hubbard model,” Phys. Rev. B 92, 014511 (2015). https://doi.org/10.1103/PhysRevB.92.014511
Y. B. Xie, “Superconducting fluctuations in the high-temperature superconductors: Theory of the dc resistivity in the normal state,” Phys. Rev. B 46, 13997 (1992). https://doi.org/10.1103/PhysRevB.46.13997
G. D. Chryssikos, E. I. Kamitsos, J. A. Kapoutsis, A. P. Patsis, V. Psycharis, A. Koufoudakis, Ch. Mitros, G. Kallias, E. Gamari-Seale, and D. Niarchos, “X-ray diffraction and infrared investigation of RBa2Cu3O7 and R0.5Pr0.5Ba2Cu3O7 compounds (R, Y and lanthanides),” Physica C 254, 44 (1995).
S. Hikami and A. I. Larkin, “Magnetoresistance of high-temperature superconductors,” Mod. Phys. Lett. B 2, 693 (1988). https://doi.org/10.1142/S0217984988000369
A. L. Solovjov, L. V. Omelchenko, R. V. Vovk, O. V. Dobrovolskiy, S. N. Kamchatnaya, and D. M. Sergeev, “Peculiarities in the pseudogap behavior in optimally doped YBa2Cu3O7–δ single crystals under pressure up to 1 GPa,” Curr. Appl. Phys. 16, 931 (2016). https://doi.org/10.1016/j.cap.2016.05.014
L. G. Aslamazov and A. L. Larkin, “The influence of fluctuation pairing of electrons on the conductivity of the normal metal,” Phys. Lett. A 26, 238 (1968). https://doi.org/10.1016/0375-9601(68)90623-3
A. L. Solovjov, “Fluctuation conductivity in Y-Ba-Cu-O films with artificially produced defects,” Low Temp. Phys. 28, 812 (2002) [Fiz. Nizk. Temp. 28, 1138 (2002)]. https://doi.org/10.1063/1.1528572
R. V. Vovk and A. L. Solovjov, “Electric transport and pseudogap in high-temperature superconducting compounds of system 1-2-3 under conditions of all-round compression,” Low Temp. Phys. 44, 81 (2018) [Fiz. Nizk. Temp. 44, 111 (2018)]. https://doi.org/10.1063/1.5020905
A. L. Solovjov, L. V. Omelchenko, V. B. Stepanov, R. V. Vovk, H.-U. Habermeier, H. Lochmajer, P. Przysłupski, and K. Rogacki, “Specific temperature dependence of pseudogap in YBa2Cu3O7−δ nanolayers,” Phys. Rev. B 94, 224505 (2016). https://doi.org/10.1103/PhysRevB.94.224505
Y. Matsuda, T. Hirai, S. Komiyama, T. Terashima, Y. Bando, K. Iijima, K. Yamamoto, and K. Hirata, “Magnetoresistance of c-axis-oriented epitaxial YBa2Cu3O7–x films above Tc” Phys. Rev. B 40, 5176 (1989). https://doi.org/10.1103/PhysRevB.40.5176
H. Alloul, F. Rullier-Albenque, B. Vignolle, D. Colson, and A. Forget, “Superconducting fluctuations, pseudogap and phase diagram in cuprates,” EPL 91, 37005 (2010). https://doi.org/10.1209/0295-5075/91/37005
T. Kondo, A. D. Palczewski, Y. Hamaya, T. Takeuchi, J. S. Wen, Z. J. Xu, G. Gu, and A. Kaminski, “Formation of gapless Fermi arcs and fingerprints of order in the pseudogap state of cuprate superconductors,” Phys. Rev. Lett. 111, 157003 (2013). https://doi.org/10.1103/PhysRevLett.111.157003
S. Badoux, W. Tabis, F. Laliberté, G. Grissonnanche, B. Vignolle, D. Vignolles, J. Béard, D. A. Bonn, W. N. Hardy, R. Liang, N. Doiron-Leyraud, L. Taillefer, and C. Proust, “Change of carrier density at the pseudogap critical point of a cuprate superconductor,” Nature (London) 531, 210 (2016). https://doi.org/10.1038/nature16983
A. A. Kordyuk, “Pseudogap from ARPES experiment: Three gaps in cuprates and topological superconductivity,” Low Temp. Phys. 41, 319 (2015) [Fiz. Nizk. Temp. 41, 417 (2015)]. https://doi.org/10.1063/1.4919371
A. L. Solovjov and V. M. Dmitriev, “Resistive studies of the pseudogap in YBCO films with consideration of the transition from BCS to bose–einstein condensation,” Low. Temp. Phys. 32, 99 (2006) [Fiz. Nizk. Temp. 32, 139 (2006)]. https://doi.org/10.1063/1.2171509
B. Leridon, A. Defossez, J. Dumont, J. Lesueur, and J. P. Contour, “Conductivity of underdoped YВа2Сu3О7–δ: Evidence for incoherent pair correlations in the pseudogap regime,” Phys. Rev. Lett. 87, 197007 (2001) https://doi.org/10.1103/PhysRevLett.87.197007
V. L. Ginzburg and L. D. Landau, “On the theory of superconductivity,” in On Superconductivity and Superfluidity (Springer, Berlin-Heidelberg, 2009).
E. M. Lifshitz and L. P. Pitaevski, Statistical Physics (Nauka, 1978).
A. Kapitulnik, M. R. Beasley, C. Castellani, and C. Di Castro, “Thermodynamic fluctuations in the high-Tc perovskite superconductors,” Phys. Rev. B 37, 537 (1988). https://doi.org/10.1103/PhysRevB.37.537
T. Schneider and J. M. Singer, Phase Transition Approach to High-Temperature Superconductivity: Universal Properties of Cuprate Superconductors (Imperial College Press, London, 2000).https://doi.org/10.1142/9781848160132
P. Pieri, G. C. Strinati, and D. Moroni, “Magnetic field effect on the pseudogap temperature within precursor superconductivity,” Phys. Rev. Lett. 89, 127003 (2002). https://doi.org/10.1103/PhysRevLett.89.127003
T. Shibauchi, L. Krusin-Elbaum, Ming Li, M. P. Maley, and P. H. Kes, “Closing the pseudogap by zeeman splitting in Bi2Sr2CaCu2O8+y at high magnetic fields,” Phys. Rev. Lett. 86, 5763 (2001). https://doi.org/10.1103/PhysRevLett.86.5763
Y. Yamada, K. Anagawa, T. Shibauchi, T. Fujii, T. Watanabe, A. Matsuda, and M. Suzuki, “Interlayer tunneling spectroscopy and doping-dependent energy-gap structure of the trilayer superconductor Bi2Sr2Ca2Cu3O10+δ,” Phys. Rev. B 68, 054533 (2003). https://doi.org/10.1103/PhysRevB.68.054533
J. Stajic, A. Iyengar, K. Levin, B. R. Boyce, and T. R. Lemberger, “Cuprate pseudogap: Competing order parameters or precursor superconductivity,” Phys. Rev. B 68, 024520 (2003). https://doi.org/10.1103/PhysRevB.68.024520
A. L. Solovjov, L. V. Omelchenko, R. V. Vovk, O. V. Dobrovolskiy, Z. F. Nazyrov, S. N. Kamchatnaya, and D. M. Sergeyev, “Hydrostatic-pressure effects on the pseudogap in slightly doped YBa2Cu3O7−δ single crystals,” Physica B 493, 58 (2016). https://doi.org/10.1016/j.physb.2016.04.015
D. S. Inosov, J. T. Park, A. Charnukha, Y. Li, A. V. Boris, B. Keimer, and V. Hinkov, “Crossover from weak to strong pairing in unconventional superconductors,” Phys. Rev. B 83, 214520 (2011). https://doi.org/10.1103/PhysRevB.83.214520
Ø Fischer, M. Kugler, I. Maggio-Aprile, and C. Berthod, “Scanning tunneling spectroscopy of high-temperature superconductors,” Rev. Mod. Phys. 79, 353 (2007). https://doi.org/10.1103/RevModPhys.79.353
A. I. D’yachenko, V. Y. Tarenkov, V. V. Kononenko, and E. M. Rudenko, “Effect of pressure on the pseudogap in Bi2223: Cuprates are not strongly coupled superconductor,” Metallofiz. Noveishie Tekhnol. 38, 565 (2016). https://doi.org/10.15407/mfint.38.05.0565
A. L. Solovjov, E. V. Petrenko, L. V. Omelchenko, R. V. Vovk, I. L. Goulatis, and A. Chroneos, “Effect of annealing on a pseudogap state in untwinned YВа2Сu3О7–δ single crystals,” Sci. Rep. 9, 9274 (2019). https://doi.org/10.1038/s41598-019-45286-w
Y. Sun and K. Maki, “Impurity effects in d-wave superconductors,” Phys. Rev. B 51, 6059 (1995). https://doi.org/10.1103/PhysRevB.51.6059
L. M. Ferreira, P. Pureur, H. A. Borges, and P. Lejay, “Effects of pressure on the fluctuation conductivity of YBa2Cu3O7,” Phys. Rev. B 69, 212505 (2004). https://doi.org/10.1103/PhysRevB.69.212505
A. L. Solovjov, L. V. Omelchenko, E. V. Petrenko, R. V. Vovk, V. V. Khotkevych, and A. Chroneos, “Peculiarities of pseudogap in Y0.95Pr0.05Ba2Cu3O7–δ single crystals under pressure up to 1.7 GPa,” Sci. Rep. 9, 20424 (2019). https://doi.org/10.1038/s41598-019-55959-1
A. L. Solovjov, K. Rogacki, N. V. Shytov, E. V. Petrenko, L. V. Bludova, A. Chroneos, and R. V. Vovk, “Influence of strong electron irradiation on fluctuation conductivity and pseudogap in YBa2Cu3O7−δ single crystals,” Phys. Rev. B 111, 174508 (2025). https://doi.org/10.1103/PhysRevB.111.174508