References
1. R. A. P. Ribeiro, J. Andres, E. Longo, and S. R. Lazaro, Appl. Surf. Sci. 452, 463 (2018). CrossRef Google Scholar
2. V. M. Longo, L. S. Cavalcante, A. T. Figueiredo, and L. P. S. Santos, Appl. Phys. Lett. 90, 091906 (2007). CrossRef Google Scholar
3. A. S. Farlenkov, M. V. Ananyev, V. A. Eremin, N. M. Porotnikova, E. K. Kurumchin, and B. T. Melekh, Solid State Ion. 290, 108 (2016). CrossRef Google Scholar
4. R. I. Eglitis, J. Kleperis, J. Purans, A. I. Popov, and R. Jia, J. Mater. Sci. 55, 203 (2020). CrossRef Google Scholar
5. V. S. Vikhnin, H. M. Liu, W. Y. Jia, S. Kapphan, R. Eglitis, and D. Usvyat, J. Lumin. 83–84, 109 (1999). CrossRef Google Scholar
6. S. Piskunov and R. I. Eglitis, Solid State Ion. 274, 29 (2015). CrossRef Google Scholar
7. A. A. Kurteeva, N. M. Bogdanovich, D. I. Bronin, N. M. Porotnikova, G. K. Vdovin, A. A. Pankratov, S. M. Beresnev, and L. A. Kuzmina, Russ. J. Electrochem. 46, 811 (2010). CrossRef Google Scholar
8. I. Z. Zhumatayeva, I. E. Kenzhina, A. L. Kozlovskiy, and M. V. Zdorovets, J. Mater. Sci. Mater. Electron. 31, 6764 (2020). CrossRef Google Scholar
9. R. I. Eglitis and A. I. Popov, Nucl. Instrum. Methods Phys. Res. B 434, 1 (2018). CrossRef Google Scholar
10. K. Dukenbayev, A. Kozlovskiy, I. Kenzhina, A. Berguzinov, and M. Zdorovets, Mater. Res. Express 6, 046309 (2019). CrossRef Google Scholar
11. V. Dimza, A. I. Popov, L. Lace, M. Kundzins, K. Kundzins, M. Antonova, and M. Livins, Curr. Appl. Phys. 17, 169 (2017). CrossRef Google Scholar
12. R. I. Eglitis, E. A. Kotomin, and G. Borstel, J. Phys. Condens. Matter 12, L431 (2000). CrossRef Google Scholar
13. H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nat. Mater. 11, 103 (2012). CrossRef Google Scholar
14. L. Grigorjeva, D. K. Millers, V. Pankratov, R. T. Williams, R. I. Eglitis, E. A. Kotomin, and G. Borstel, Solid State Commun. 129, 691 (2004). CrossRef Google Scholar
15. R. I. Eglitis, E. A. Kotomin, V. A. Trepakov, S. E. Kapphan, and G. Borstel, J. Phys. Condens. Matter 14, L647 (2002). CrossRef Google Scholar
16. C. Franchini, M. Reticcioli, M. Setvin, and U. Diebold, Nat. Rev. Mater. 6, 560 (2021). CrossRef Google Scholar
17. M. Zhong, W. Zeng, F. S. Liu, B. Tang, and Q. J. Liu, Surf. Interface Anal. 51, 1021 (2019). CrossRef Google Scholar
18. R. I. Eglitis, J. Purans, J. Gabrusenoks, A. I. Popov, and R. Jia, Crystals 10, 745 (2020). CrossRef Google Scholar
19. R. I. Eglitis, J. Purans, and R. Jia, Crystals 11, 455 (2021). CrossRef Google Scholar
20. J. R. Sambrano, V. M. Longo, E. Longo, and C. A. Taft, J. Mol. Struct.: THEOCHEM 813, 49 (2007). CrossRef Google Scholar
21. R. Eglitis and S. P. Kruchinin, Mod. Phys. Lett. B 34, 2040057 (2020). CrossRef Google Scholar
22. J. S. Kim, J. H. Wang, B. K. Kim, and Y. C. Kim, Solid State Ion. 275, 19 (2015). CrossRef Google Scholar
23. X. Guo, J. Ge, F. Ponchel, D. Remiens, Y. Chen, X. Dong, and G. Wang, Thin Solid Films 632, 93 (2017). CrossRef Google Scholar
24. G. Borstel, R. I. Eglitis, E. A. Kotomin, and E. Heifets, Phys. Status Solidi B 236, 253 (2003). CrossRef Google Scholar
25. H. S. Wei, J. Y. Cai, Y. Zhang, X. R. Zhang, E. A. Baranova, J. W. Cui, Y. Wang, X. Shu, Y. Q. Qin, J. Q. Liu, and Y. C. Wu, RSC Adv. 10, 42619 (2020). CrossRef Google Scholar
26. E. Heifets, R. I. Eglitis, E. A. Kotomin, J. Maier, and G. Borstel, Phys. Rev. B 64, 235417 (2001). CrossRef Google Scholar
27. Y. Li, J. Yang, Y. A. Zhu, Z. J. Sui, X. G. Zhou, D. Chen, and W. K. Yuan, Phys. Chem. Chem. Phys. 21, 12859 (2019). CrossRef Google Scholar
28. R. I. Eglitis and D. Vanderbilt, Phys. Rev. B 76, 155439 (2007). CrossRef Google Scholar
29. H. J. Chun, H. K. Kim, Y. Yoon, and S. C. Park, Surf. Sci. 703, 121737 (2021). CrossRef Google Scholar
30. N. V. Krainyukova, V. O. Hamalii, A. V. Peschanskii, A. I. Popov, and E. A. Kotomin, Fiz. Nizk. Temp. 46, 877 (2020) [Low Temp. Phys. 46, 740 (2020)]. CrossRef Google Scholar
31. V. O. Hamalii, A. V. Peschanskii, A. I. Popov, and N. V. Krainyukova, Fiz. Nizk. Temp. 46, 1377 (2020) [Low Temp. Phys. 46, 1170 (2020)]. CrossRef Google Scholar
32. S. Okamoto, W. Zhu, Y. Nomura, R. Arita, D. Xiao, and N. Nagaosa, Phys. Rev. B 89, 195121 (2014). CrossRef Google Scholar
33. S. Okamoto and D. Xiao, J. Phys. Soc. Jpn. 87, 041006 (2018). CrossRef Google Scholar
34. R. I. Eglitis, Appl. Surf. Sci. 358, 556 (2015). CrossRef Google Scholar
35. B. C. Russell and M. R. Castell, J. Phys. Chem. C 112, 6538 (2008). CrossRef Google Scholar
36. R. I. Eglitis, Phys. Status Solidi B 252, 635 (2015). CrossRef Google Scholar
37. L. Miao, R. Du, Y. Yin, and Q. Li, Appl. Phys. Lett. 109, 261604 (2016). CrossRef Google Scholar
38. R. I. Eglitis, Ferroelectrics 483, 53 (2015). CrossRef Google Scholar
39. Y. Zhu, P. A. Salvador, and G. S. Rohrer, Chem. Mater. 28, 5155 (2016). CrossRef Google Scholar
40. T. Bolstad, K. Kjærnes, K. Raa, R. Takahashi, M. Lippmaa, and T. Tybell, Mater. Res. Express 6, 056409 (2019). CrossRef Google Scholar
41. R. I. Eglitis, J. Purans, A. I. Popov, and R. Jia, Int. J. Mod. Phys. B 33, 1950390 (2019). CrossRef Google Scholar
42. A. I. Popov, E. A. Kotomin, and J. Maier, Nucl. Instr. Meth. B 268, 3084 (2010). CrossRef Google Scholar
43. R. Eglitis, A. I. Popov, J. Purans, and R. Jia, Fiz. Nizk. Temp. 46, 1418 (2020) [Low Temp. Phys. 46, 1206 (2020)]. CrossRef Google Scholar
44. L. L. Rusevich, E. A. Kotomin, G. Zvejnieks, and A. I. Popov, Fiz. Nizk. Temp. 46, 1394 (2020) [Low Temp. Phys. 46, 1185 (2020)]. CrossRef Google Scholar
45. R. I. Eglitis, Int. J. Mod. Phys. B 28, 1430009 (2014). CrossRef Google Scholar
46. R. I. Eglitis and A. I. Popov, J. Nano-Electron. Phys. 11, 01001 (2019). CrossRef Google Scholar
47. E. A. Kotomin and A. I. Popov, Nucl. Instr. Meth. B 141, 1 (1998). CrossRef Google Scholar
48. H. Donnerberg and A. Birkholz, J. Phys. Condens. Matter 12, 8239 (2000). CrossRef Google Scholar
49. J. J. Brown, Z. Ke, W. Geng, and A. J. Page, J. Phys. Chem. C 122, 14590 (2018). CrossRef Google Scholar
50. M. Q. Cai, Y. J. Zhang, Z. Yin, and M. Zhang, Phys. Rev. B 72, 075406 (2005). CrossRef Google Scholar
51. M. Arrigoni, T. S. Bjørnheim, E. Kotomin, and J. Maier, Phys. Chem. Chem. Phys. 18, 9902 (2016). CrossRef Google Scholar
52. C. Duque and A. Stashans, Physica B 336, 227 (2003). CrossRef Google Scholar
53. R. I. Eglitis and S. Piskunov, Comput. Condens. Matter 7, 1 (2016). CrossRef Google Scholar
54. M. Sokolov, R. I. Eglitis, S. Piskunov, and Y. F. Zhukovskii, Int. J. Mod. Phys. B 31, 1750251 (2017). CrossRef Google Scholar
55. J. Carrasco, F. Illas, N. Lopez, E. A. Kotomin, Y. F. Zhukovskii, R. A. Evarestov, Y. A. Mastrikov, S. Piskunov, and J. Maier, Phys. Rev. B 73, 064106 (2006). CrossRef Google Scholar
56. Y. F. Zhukovskii, E. A. Kotomin, S. Piskunov, and D. E. Ellis, Solid State Commun. 149, 1359 (2009). CrossRef Google Scholar
57. R. I. Eglitis, E. A. Kotomin, G. Borstel, S. E. Kapphan, and V. S. Vikhnin, Comput. Mater. Sci. 27, 81 (2003). CrossRef Google Scholar
58. I. I. Leonidov, V. I. Tsidilkovski, E. S. Tropin, M. I. Vlasov, and L. P. Putilov, Mater. Lett. 212, 336 (2018). CrossRef Google Scholar
59. H. Tan, Z. Zhao, W. B. Zhu, E. N. Coker, B. Li, M. Zheng, W. Yu, H. Fan, and Z. Sun, ACS Appl. Mater. Interfaces 6, 19184 (2014). CrossRef Google Scholar
60. E. A. Kotomin, S. Piskunov, Y. F. Zhukovskii, R. I. Eglitis, A. Gopejenko, and D. E. Ellis, Phys. Chem. Chem. Phys. 10, 4258 (2008). CrossRef Google Scholar
61. Q. C. Zhao, H. L. Gong, X. H. Wang, and L. T. Li, Phys. Status Solidi A 215, 1800168 (2018). CrossRef Google Scholar
62. R. Shimizu, K. Iwaya, T. Ohsawa, S. Shiraki, T. Hasegawa, T. Hashizume, and T. Hitosugi, Appl. Phys. Lett. 100, 263106 (2012). CrossRef Google Scholar
63. K. Takeyasu, K. Fukada, M. Matsumoto, and K. Fukutani, J. Phys. Condens. Matter 25, 162202 (2013). CrossRef Google Scholar
64. Y. L. Li, D. N. Zhang, S. B. Qu, M. Yang, and Y. P. Feng, Surf. Sci. 641, 37 (2015). CrossRef Google Scholar
65. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992). CrossRef Google Scholar
66. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988). CrossRef Google Scholar
67. V. R. Saunders, R. Dovesi, C. Roetti, N. Causa, N. M. Harrison, R. Orlando, and C. M. Zicovich-Wilson, CRYSTAL-2014 User Manual (University of Torino, Italy, 2014). Google Scholar
68. R. E. Cohen, J. Phys. Chem. Solids 57, 1393 (1996). CrossRef Google Scholar
69. R. E. Cohen, Ferroelectrics 194, 323 (1997). CrossRef Google Scholar
70. S. Piskunov, E. Heifets, R. I. Eglitis, and G. Borstel, Comput. Mater. Sci. 29, 165 (2004). CrossRef Google Scholar
71. P. W. Tasker, J. Phys. C 12, 4977 (1979). CrossRef Google Scholar
72. I. Mayer, Int. J. Quantum. Chem. 26, 151 (1984). CrossRef Google Scholar
73. R. C. Bochicchio and H. F. Reale, J. Phys. B 26, 4871 (1993). CrossRef Google Scholar
74. H. Shi, L. Chang, R. Jia, and R. I. Eglitis, J. Phys. Chem. C 116, 4832 (2012). CrossRef Google Scholar
75. H. B. Schlegel, J. Comput. Chem. 3, 214 (1982). CrossRef Google Scholar
76. B. Civalleri, P. D’Arco, R. Orlando, V. R. Saunders, and R. Dovesi, Chem. Phys. Lett. 348, 131 (2001). CrossRef Google Scholar
77. S. Piskunov, E. A. Kotomin, E. Heifets, J. Maier, R. I. Eglitis, and G. Borstel, Surf. Sci. 575, 75 (2005). CrossRef Google Scholar
78. R. I. Eglitis and D. Vanderbilt, Phys. Rev. B 77, 195408 (2008). CrossRef Google Scholar
79. R. I. Eglitis and M. Rohlfing, J. Phys. Condens. Matter 22, 415901 (2010). CrossRef Google Scholar
80. K. van Benthem, C. Elsässer, and R. H. French, J. Appl. Phys. 90, 6156 (2001). CrossRef Google Scholar
81. B. Meyer, J. Padilla, and D. Vanderbilt, Faraday Discuss. 114, 395 (1999). CrossRef Google Scholar
82. M. Sato, Y. Soejima, N. Ohama, A. Okazaki, H. J. Scheel, and K. A. Müller, Phase Trans. 5, 207 (1985). CrossRef Google Scholar
83. J. G. Bednorz and H. J. Scheel, J. Cryst. Growth 41, 5 (1977). CrossRef Google Scholar
84. S. H. Wemple, Phys. Rev. B 2, 2679 (1970). CrossRef Google Scholar
85. J. W. Edwards, R. Speiser, and H. L. Johston, J. Amer. Chem. Soc. 73, 2934 (1951). CrossRef Google Scholar
86. J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000). CrossRef Google Scholar
87. C. H. Peng, J. F. Chang, and S. Desu, Mater. Res. Soc. Symp. Proc. 243, 21 (1992). CrossRef Google Scholar
88. R. J. Nelmes and W. F. Kuhs, Solid State Commun. 54, 721 (1985). CrossRef Google Scholar
89. S. A. Mabud and A. M. Glazer, J. Appl. Cryst. 12, 49 (1979). CrossRef Google Scholar
90. Y. S. Lee, J. S. Lee, T. W. Noh, D. Y. Byun, K. S. Yoo, K. Yamaura, and E. Takayama-Muromachi, Phys. Rev. B 67, 113101 (2003). CrossRef Google Scholar
91. M. Yoshino, H. Yukawa, and M. Morinaga, Mater. Trans. 45, 2056 (2004). CrossRef Google Scholar
92. B. J. Kennedy, C. J. Howard, and B. C. Chakoumakos, Phys. Rev. B 59, 4023 (1999). CrossRef Google Scholar
93. A. F. Fix, F. U. Abuova, E. A. Kotomin, and A. T. Akilbekov, Phys. Scr. 86, 035304 (2012). CrossRef Google Scholar
94. H. Shi, R. Jia, and R. I. Eglitis, Solid State Ion. 187, 1 (2011). CrossRef Google Scholar
95. E. A. Kotomin, A. I. Popov, and R. I. Eglitis, J. Phys. Condens. Matter 4, 5901 (1992). CrossRef Google Scholar
96. A. S. Farlenkov, M. V. Ananyev, V. A. Eremin, N. M. Porotnikova, and E. K. Kurumchin, Fuel Cells 15, 131 (2015). CrossRef Google Scholar
97. N. M. Porotnikova, V. A. Eremin, A. S. Farlenkov, E. K. Kurumchin, E. A. Sherstobitova, D. I. Kochubey, and M. V. Ananyev, Catal. Lett. 148, 2839 (2018). CrossRef Google Scholar
98. D. A. Osinkin, A. V. Khodimchuk, N. M. Porotnikova, N. M. Bogdanovich, A. V. Fetisov, and M. V. Ananyev, Energies 13, 250 (2020). CrossRef Google Scholar