Low Temperature Physics: 46, 856 (2020); https://doi.org/10.1063/10.0001554
Физика Низких Температур: Том 46, Выпуск 8 (Август 2020), c. 1014-1020    ( к оглавлению , назад )

Dynamics of pair of coupled nonlinear systems. I. Magnetic systems

A.S. Kovalev1,2, Y.E. Prilepskii3, and K.A. Gradjushko2

1B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine Kharkiv 61103, Ukraine

2V.N. Karazin Kharkiv State University, Kharkiv 61077, Ukraine

3Aston Birmingham University, UK
E-mail: kovalev@ilt.kharkov.ua

Received April 23, 2020, published online June 22, 2020

Abstract

In the framework of the Landau–Lifshitz equations for discrete systems, the dynamics of two classical magnetic moments modeling weakly coupled magnetic nanodots, layers of quasi-two-dimensional magnets and two-sublattice magnets are considered. Exact solutions of dynamic equations are found and investigated. Particular attention is paid to the study of essentially nonlinear inhomogeneous states with different levels of excitation for identical subsystems as a discrete analog for the magnetic solitons.

Анотація

В межах рівнянь Ландау–Ліфшиця для дискретних систем розглянуто динаміку двох класичних магнітних моментів, що моделюють слабкозв’язані магнітні нанодоти, шари квазідво-вимірних магнетиків та двопідграткові магнетики. Знайдено й досліджено точні розв’язки динамічних рівнянь. Особливу увагу приділено дослідженню суттєво нелінійних неоднорідних станів з різним рівнем збудження ідентичних підсистем.

Key words: nonlinear systems, Landau–Lifshitz equations, magnetic resonance, phase portrait, ferromagnetic and antiferromagnetic interactions.