References
1. J. Boussinesq, C. R. l'Acad. Sci. 72, 755 (1871). Google Scholar
2. Lord Rayleigh, Philos. Mag. 1, 257 (1876). CrossRef Google Scholar
3. C. I. Christov, G. A. Maugin, and A. V. Porubov, C. R. Méc. 335, 521 (2007). CrossRef Google Scholar
4. G. A. Maugin, Proc. Est. Acad. Sci. Phys. Math. 44, 40 (1995). Google Scholar
5. G. A. Maugin, Nonlinear Waves in Elastic Crystals (Oxford University Press, Oxford, 1999). Google Scholar
6. A. V. Porubov, Amplification of Nonlinear Strain Waves in Solids (World Scientific, Singapore, 2003). CrossRef Google Scholar
7. A. Berezovski, J. Engelbrecht, A. Salupere, K. Tamm, T. Peets, and M. Berezovski, Int. J. Solids Struct. 50, 1981 (2013). CrossRef Google Scholar
8. A. M. Kosevich, The Crystal Lattice: Phonons, Solitons, Dislocations (Wiley-VCH, Berlin, 1999). CrossRef Google Scholar
9. A. Samsonov, Strain Solitons in Solids and How to Construct Them (Chapman and Hall/CRC, Boca Raton, 2001). CrossRef Google Scholar
10. J. Engelbrecht, F. Pastrone, M. Braun, and A. Berezovski, in The Universality of Nonclassical Nonlinearity: Applications to Non-destructive Evaluations and Ultrasonics, edited by P. P. Delsanto (2006), p. 29. CrossRef Google Scholar
11. J. Engelbrecht, K. Tamm, and T. Peets, Philos. Mag. 97, 967 (2017). CrossRef Google Scholar
12. L. V. Bogdanov and V. E. Zakharov, Physica D 165, 137 (2002). CrossRef Google Scholar
13. A. A. Himonas and D. Mantzavinos, J. Differ. Equations 258, 3107 (2015). CrossRef Google Scholar
14. M. M. Bogdan, A. M. Kosevich, and G. A. Maugin, Wave Motion 34, 1 (2001). CrossRef Google Scholar
15. A. Kosevich and A. Kovalev, Solid State Commun. 12, 763 (1973). CrossRef Google Scholar
16. O. V. Charkina and M. M. Bogdan, Symmetry, Integr. Geometry Methods Appl. 2, 047 (2006). Google Scholar
17. G. A. Maugin and C. I. Christov, Proc. Estonian Acad. Sci. Physics. Math. 46, 78 (1997). Google Scholar
18. J. Engelbrecht, Nonlinear Wave Dynamics. Complexity and Simplicity (Kluwer, Dordrecht, 1997). CrossRef Google Scholar
19. A. C. Eringen, Nonlinear Theory of Continuous Media (McGraw-Hill Book Company, New York, 1962). Google Scholar
20. G. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974). Google Scholar
21. T. Heimburg and A. D. Jackson, Proc. Natl. Acad. Sci. U. S. A. 102, 9790 (2005). CrossRef Google Scholar
22. R. Mindlin, Arch. Ration. Mech. Anal. 16, 51 (1964). CrossRef Google Scholar
23. J. Engelbrecht, A. Berezovski, F. Pastrone, and M. Braun, Philos. Mag. 85, 4127 (2005). CrossRef Google Scholar
24. J. Engelbrecht, A. Salupere, and K. Tamm, Wave Motion 48, 717 (2011). CrossRef Google Scholar
25. T. Peets, M. Randrüüt, and J. Engelbrecht, Wave Motion 45, 471 (2008). CrossRef Google Scholar
26. J. Janno and J. Engelbrecht, Microstructured Solids: Inverse Problems (Springer, Heidelberg, 2011). Google Scholar
27. J. K. Mueller and W. J. Tyler, Phys. Biol. 11, 051001 (2014). CrossRef Google Scholar
28. I. Tasaki, Physiol. Chem. Phys. Med. NMR 20, 251 (1988).CAS Google Scholar
29. S. Terakawa, J. Physiol. 369, 229 (1985). CrossRef Google Scholar
30. J. Engelbrecht, K. Tamm, and T. Peets, Biomech. Model. Mechanobiol. 14, 159 (2015). CrossRef Google Scholar
31. N. Zabusky and M. Kruskal, Phys. Rev. Lett. 15, 240 (1965). CrossRef Google Scholar
32. T. Peets, K. Tamm, and J. Engelbrecht, Wave Motion 71, 113 (2017). CrossRef Google Scholar
33. A. Salupere, in Applied Wave Mathematics, edited by E. Quak and T. Soomere (Springer Berlin Heidelberg, Berlin, 2009), p. 301. CrossRef Google Scholar
34. K. Tamm and T. Peets, Chaos, Solitons Fractals 73, 108 (2015). CrossRef Google Scholar