References
1. A. K. Clogston, Phys. Rev. Lett. 9, 266 (1962). CrossRef Google Scholar
2. B. S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962). CrossRef Google Scholar
3. More precisely, the Maki parameter, αâ=â2Horb/HP [K. Maki and T. Tsuneto, Prog. Theor. Phys. 31, 945 (1964)], should be larger than 1.8 L. W. Gruenberg and L. Gunther, Phys. Rev. Lett. 16, 996 (1966)]. CrossRef Google Scholar
4. P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964). CrossRef Google Scholar
5. A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964) A. I. Larkin and Y. N. Ovchinnikov, [Sov. Phys. JETP 20, 762 (1965)]. CAS Google Scholar
6. Y. Matsuda and H. Shimahara, J. Phys. Soc. Jpn. 76, 051005 (2007). CrossRef Google Scholar
7. G. Zwicknagl and J. Wosnitza, BCS: 50 years, edited by L. N. Cooper and D. Feldman (World Scientific, Singapore, 2011), p. 337; G. Zwicknagl and J. Wosnitza, Int. J. Mod. Phys. B, 24, 3915 (2010). Google Scholar
8. M. Lang and J. Müller, Organic Superconductors in Superconductivity, edited by K. H. Bennemann and J. B. Ketterson, (Springer-Verlag, Berlin, Heidelberg, 2008), Vol. II, pp. 1155â1223. Google Scholar
9. T. Ishiguro, K. Yamaaji, and G. Saito, Organic Superconductors (Springer-Verlag, Berlin, Heidelberg, 1998). Google Scholar
10. J. Wosnitza, Physica C 317â318, 98 (1999). CrossRef Google Scholar
11. J. Wosnitza, J. Low Temp. Phys. 117, 1701 (1999). CrossRef Google Scholar
12. J. Wosnitza, Crystals 2, 248 (2012). CrossRef Google Scholar
13. M. A. Tanatar, T. Ishiguro, H. Tanaka, and H. Kobayashi, Phys. Rev. B 66, 134503 (2002). CrossRef Google Scholar
14. S. Uji, T. Terashima, M. Nishimura, Y. Takahide, T. Konoike, K. Enomoto, H. Cui, H. Kobayashi, A. Kobayashi, H. Tanaka, M. Tokumoto, E. S. Choi, T. Tokumoto, D. Graf, and J. S. Brooks, Phys. Rev. Lett. 97, 157001 (2006). CrossRef Google Scholar
15. K. Cho, B. E. Smith, W. A. Coniglio, L. E. Winter, C. C. Agosta, and J. A. Schlueter, Phys. Rev. B 79, 220507âR) (2009). Google Scholar
16. R. Lortz, Y. Wang, A. Demuer, P. H. M. Böttger, B. Bergk, G. Zwicknagl, Y. Nakazawa, and J. Wosnitza, Phys. Rev. Lett. 99, 187002 (2007). CrossRef Google Scholar
17. B. Bergk, A. Demuer, I. Sheikin, Y. Wang, J. Wosnitza, Y. Nakazawa, and R. Lortz, Physica C 470, 586 (2010). CrossRef Google Scholar
18. B. Bergk, A. Demuer, I. Sheikin, Y. Wang, J. Wosnitza, Y. Nakazawa, and R. Lortz, Phys. Rev. B 83, 064506 (2011). CrossRef Google Scholar
19. R. Beyer, B. Bergk, S. Yasin, J. A. Schlueter, and J. Wosnitza, Phys. Rev. Lett. 109, 027003 (2012). CrossRef Google Scholar
20. J. A. Wright, E. Green, P. Kuhns, A. Reyes, J. Brooks, J. Schlueter, R. Kato, H. Yamamoto, M. Kobayashi, and S. E. Brown, Phys. Rev. Lett. 107, 087002 (2011). CrossRef Google Scholar
21. A. Bianchi, R. Movshovich, C. Capan, P. G. Pagliuso, and J. L. Sarrao, Phys. Rev. Lett. 91, 187004 (2003). CrossRef Google Scholar
22. H. A. Radovan, N. A. Fortune, T. P. Murphy, S. T. Hannahs, E. C. Palm, S. W. Tozer, and D. Hall, Nature 425, 51 (2003). CrossRef Google Scholar
23. B.-L. Young, R. R. Urbano, N. J. Curro, J. D. Thompson, J. L. Sarrao, A. B. Vorontsov, and M. J. Graf, Phys. Rev. Lett. 98, 036402 (2007). CrossRef Google Scholar
24. M. Kenzelmann, T. Strässle, C. Niedermayer, M. Sigrist, B. Padmanabhan, M. Zolliker, A. D. Bianchi, R. Movshovich, E. D. Bauer, J. L. Sarrao, and J. D. Thompson, Science 321, 1652 (2008). CrossRef Google Scholar
25. Y. Tokiwa, E. D. Bauer, and P. Gegenwart, Phys. Rev. Lett. 109, 116402 (2012). Here, also further references to the discussion on the assumed FFLO state in CeCoIn5 are given. CrossRef Google Scholar
26. H. Urayama, H. Yamochi, G. Saito, S. Sato, A. Kawamoto, J. Tanaka, T. Mori, Y. Maruyama, and H. Inokuchi, Chem. Lett. 1988, 55 (1988). Google Scholar
27. U. Geiser, J. A. Schlueter, H. H. Wang, A. M. Kini, J. M. Williams, P. P. Sche, H. I. Zakowicz, M. L. VanZile, and J. D. Dudek, J. Am. Chem. Soc. 118, 9996 (1996); CrossRef Google Scholar
28. Y. Wang, T. Plackowski, and A. Junod, Physica C 355, 179 (2001). CrossRef Google Scholar
29. N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147, 295 (1966). CrossRef Google Scholar
30. B. Mühlschlegel, Z. Phys. 155, 313 (1959). CrossRef Google Scholar
31. H. Padamsee, J. E. Neighbor, and C. A. Schiffman, J. Low Temp. Phys. 12, 387 (1973). CrossRef Google Scholar
32. J. Wosnitza, S. Wanka, J. Hagel, M. Reibelt, D. Schweitzer, and J. A. Schlueter, Synth. Met. 133â134, 201 (2003). CrossRef Google Scholar
33. J. Müller, M. Lang, R. Helfrich, F. Steglich, and T. Sakai, Phys. Rev. B 65, 140509âR) (2002). Google Scholar
34. S. Wanka, J. Hagel, D. Beckmann, J. Wosnitza, J. A. Schlueter, J. M. Williams, P. G. Nixon, R. W. Winter, and G. L. Gard, Phys. Rev. B 57, 3084 (1998). CrossRef Google Scholar
35. J. Wosnitza, X. Liu, D. Schweitzer, and H. J. Keller, Phys. Rev. B 50, 12 747 (1994). CrossRef Google Scholar
36. H. Elsinger, J. Wosnitza, S. Wanka, J. Hagel, D. Schweitzer, and W. Strunz, Phys. Rev. Lett. 84, 6098 (2000). CrossRef Google Scholar
37. A. E. Kovalev, T. Ishiguro, J. Yamada, S. Takasaki, and H. Anzai, JETP 92, 1035 (2001). CrossRef Google Scholar
38. O. J. Taylor, A. Carrington, and J. A. Schlueter, Phys. Rev. Lett. 99, 057001 (2007). CrossRef Google Scholar
39. K. Machida and M. Ichioka, Phys. Rev. B 77, 184515 (2008). CrossRef Google Scholar
40. Calculations were done by G. Zwicknagl as described in Ref. 16. Google Scholar