References
1. M. Ya. Azbel and E. A. Kaner, “The theory of cyclotron resonance in metals,” Zh. Eksp. Teor. Fiz. 30, 811 (1956) [Sov. Phys. JETP 3, 772 (1956)]. Google Scholar
2. M. Ya. Azbel and E. A. Kaner, “Theory of cyclotron resonance in metals,” Zh. Eksp. Teor. Fiz. 32, 896 (1957) [Sov. Phys. JETP 5, 730 (1957)]. Google Scholar
3. M. Ya. Azbel and E. A. Kaner, “Cyclotron resonance in metals,” J. Phys. Chem. Solids 6, 113 (1958). CrossRef Google Scholar
4. B. Ricco and M. Ya. Azbel, “Physics of resonant tunneling. The one-dimensional double-barrier case,” Phys. Rev. B 84, 1970 (1986). Google Scholar
5. M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photon. 11, 543 (2017). CrossRef Google Scholar
6. J. von Neuman and E. Wigner, “Über merkwürdige diskrete Eigenwerte,” Phys. Z 30, 465 (1929). Google Scholar
7. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1, 16048 (2016). CrossRef Google Scholar
8. K. Koshelev, A. Bogdanov, and Y. Kivshar, “Engineering with bound states in the continuum,” Opt. Photon. News 31, 38 (2020). CrossRef Google Scholar
9. S. I. Azzam and A. V. Kildishev, “Photonic bound states in the continuum: From basics to applications,” Adv. Opt. Mater. 9, 2001469 (2021). CrossRef Google Scholar
10. A. Bogdanov, A. Fratalocchi, and Y. Kivshar, “The science of harnessing lights darkness,” Nanophotonics 10, 4171 (2021). CrossRef Google Scholar
11. D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100, 183902 (2008). CrossRef Google Scholar
12. Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett. 107, 183901 (2011). CrossRef Google Scholar
13. S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A. Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S. Kivshar, “Compact surface Fano states embedded in the continuum of waveguide arrays,” Phys. Rev. Lett. 111, 240403 (2013). CrossRef Google Scholar
14. C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499, 188 (2013). CrossRef Google Scholar
15. H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32, 3231 (1985). CrossRef Google Scholar
16. M.-S. Hwang, H.-R. Kim, K.-Y. Jeong, H.-G. Park, and Y. Kivshar, “Novel non-plasmonic nanolasers empowered by topology and interference effects,” Nanophotonics 10, 3599 (2021). CrossRef Google Scholar
17. M. S. Hwang, H.-C. Lee, K. H. Kim, K.-Y. Jeong, S.-H. Kwon, K. Koshelev, Y. Kivshar, and H.-G. Park, “Ultralow-threshold laser using super-bound states in the continuum,” Nat. Commun. 12, 4135 (2021). CrossRef Google Scholar
18. C.-W. Qiu, T. Zhang, G. Hu, and Y. Kivshar, “Quo vadis, metasurfaces?,” Nano Lett. 21, 5461 (2021). CrossRef Google Scholar
19. H.-H. Hsiao, C.-H. Chu, and D.-P. Tsai, “Fundamentals and applications of metasurfaces,” Small Methods 1, 1600064 (2017). CrossRef Google Scholar
20. A. Tittl, F. Yesilkoy, H. Altug, S. A. Maier, and Y. Kivshar, “Dielectric metasurfaces for surface-enhanced spectroscopies,” Opt. Photon. News 12, 55 (2018). (“Optics in 2018,” special issue). Google Scholar
21. F. Yesilkoy, E. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, and H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces,” Nat. Photon. 13, 390 (2019). CrossRef Google Scholar
22. Y. Jahani, E. R. Arvelo, F. Yesilkoy, K. Koshelev, C. Cianciaruso, M. De Palma, Y. Kivshar, and H. Altug, “Imaging-based spectrometer-less optofluidic biosensors based on dielectric metasurfaces for detecting extracellular vesicles,” Nat. Commun. 12, 3246 (2021). CrossRef Google Scholar
23. T. Pertch and Y. Kivshar, “Nonlinear optics with resonant metasurfaces,” MRS Bull. 45, 210 (2020). CrossRef Google Scholar
24. K. Koshelev and Y. Kivshar, “Dielectric resonant metaphotonics,” ACS Photonics 8, 102 (2021). CrossRef Google Scholar
25. M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett. 119, 243901 (2017). CrossRef Google Scholar
26. K. Koshelev, A. Bogdanov, and Y. Kivshar, “Meta-optics and bound states in the continuum,” Sci. Bull. 64, 836 (2019). CrossRef Google Scholar
27. K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J.-H. Choi, A. Bogdanov, H.-G. Park, and Y. Kivshar, “Subwavelength dielectric resonators for nonlinear nanophotonics,” Science 367, 288 (2020). CrossRef Google Scholar
28. L. Carletti, K. Koshelev, C. De Angelis, and Y. Kivshar, “Giant nonlinear response at the nanoscale driven by bound states in the continuum,” Phys. Rev. Lett. 121, 033903 (2018). CrossRef Google Scholar
29. E. Melik-Gaykazyan, K. Koshelev, J.-H. Choi, S. S. Kruk, A. Bogdanov, H.-G. Park, and Y. S. Kivshar, “From Fano to quasi-BIC resonances in individual dielectric nanoantennas,” Nano Lett. 21, 1765 (2021). CrossRef Google Scholar
30. M. Odit, K. Koshelev, S. Gladyshev, K. Ladutenko, Y. Kivshar, and A. Bogdanov, “Observation of supercavity modes in subwavelength dielectric resonators,” Adv. Mater. 33, 2003804 (2021). CrossRef Google Scholar