Физика Низких Температур: Том 47, Выпуск 4 (Апрель 2021), c. 378-381
(
к оглавлению
,
назад
)
Nonstationary equation for the one-particle wave function of the Bose–Einstein condensateV. B. Bobrov1,2, S. A. Trigger1,3, and A. G. Zagorodny4 1Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow 125412, Russia 2National Research University “Moscow Power Engineering Institute”, Moscow 111250, Russia 3Physical Institute, Humboldt-University, Berlin D-12489, Germany 4Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, Kiev 03680, Ukraine Received December 8, 2020, revised January 12, 2021, published online February 26, 2021 Abstract Based on the self-consistent Hartree–Fock approximation, the nonstationary equation is obtained for the one-particle wave function describing the Bose–Einstein condensate in a rarefied gas of spin-zero bosons. A rarefied gas of bosons is exposed to the static external field, which ensures its finite ground state. The derived equation allows one to correctly determine the ground state energy in the stationary case. Анотація Key words: degenerate Bose gas, Bose–Einstein condensate, self-consistent Hartree–Fock approximation, ground state energy. |