References
1. B. D. Josephson, Phys. Lett. 1, 251 (1962). CrossRef Google Scholar
2. P. W. Anderson, Special Effects in Superconductivity, in: Lectures on the Manybody Problem, E. R. Caianiello (ed.), Vol. II p. 113, Academic Press, Ravello (1963). Google Scholar
3. I. O. Kulik and K. Yanson, The Josephson Effect in Superconductive Tunneling Structures (Israel Program of Scientific Translations), Jerusalem (1972). Google Scholar
4. A. Barone and G. Paternó, Physics and Applications of the Josephson Effect, Wiley, New York (1982). Google Scholar
5. K. K. Likharev, Dynamics of Josephson Junctions and Circuits, Gordon and Breach, New York (1986); K. K. Likharev,Rev. Mod. Phys. 51, 101 (1979). CrossRef Google Scholar
6. A. Barone, Weakly Coupled Macroscopic Quantum Systems: Likeness with Difference, I. O. Kulik and R. Ellialtioglu (eds.), Kluwer Academic Publishers (2000), p. 301. Google Scholar
7. D. J. Van Harlingen, Rev. Mod. Phys. 67, 515 (1995). CrossRef Google Scholar
8. C. C. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969 (2000) and Refs. cited therein. CrossRef Google Scholar
9. S. Coleman, Phys. Rev. D 15, 2929 (1977). CrossRef Google Scholar
10. A. J. Leggett, Macroscopic Quantum Systems and the Quantum Theory of Measurements, Suppl. Prog. Theor. Phys. 69, 80 (1980); A. J. Leggett, Quantum Tunneling of a Macroscopic Variable in Quantum Tunneling in Condensed Media, Yu. Kagan and A. J. Leggett (eds.), Elsevier Science Publ. (1992) and Refs. cited therein. Google Scholar
11. Yu. M. Ivanchenko and L. A. Zilberman, Sov. Phys. JETP 28, 1272 (1969). Google Scholar
12. A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981). CrossRef Google Scholar
13. H. Grabert and U. Weiss, Phys. Rev. Lett. 53, 1787 (1984). CrossRef Google Scholar
14. A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 85, 1510 (1983) A. I. Larkin and Yu. N. Ovchinnikov [Sov. Phys. JETP 58, 876 (1983)]; A. I. Larkin and Yu. N. Ovchinnikov,Phys. Rev. B 28, 828 (1983). CrossRef Google Scholar
15. A. Barone and Yu. N. Ovchinnikov, J. Low Temp. Phys. 55, 297 (1984); CrossRef Google Scholar
16. R. F. Voss and R. A. Webb, Phys. Rev. Lett. 47, 265 (1981); CrossRef Google Scholar
17. Josepshon Effect-Achievements and Trends ISI-85 Torino, A. Barone (ed.) World Scientific (1985) and Refs. reported therein. Google Scholar
18. A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fischer, A. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987). CrossRef Google Scholar
19. J. Clarke, A. N. Cleland, M. H. Devoret, D. Esteve, and J. M. Martinis, Science 29, 992 (1988). CrossRef Google Scholar
20. A. V. Zhuravlev and A. B. Zorin, Fiz. Nizk. Temp. 16, 184 (1990) A. V. Zhuravlev and A. B. Zorin,[Sov. J. Low Temp. Phys. 16, 102 (1990)]; J. M. Schmidt, A. N. Cleland, and J. Clarke, Phys. Rev. B 43, 229 (1991). CrossRef Google Scholar
21. R. Rouse, S. Han, and J. E. Lukens, Phys. Rev. B B75, 1614 (1995). Google Scholar
22. C. Cosmelli, P. Carelli, M. G. Castellano, F. Chiariello, G. D. Palazzi, R. Leoni, and G. Torrioli, Phys. Rev. Lett. 82, 5357 (1999). CrossRef Google Scholar
23. Y. Nakamura, Y. Pashkin, and J. S. Tsai, Nature 398, 786 (1999). CrossRef Google Scholar
24. J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens, Nature 406, 43 (2000). CrossRef Google Scholar
25. L. B. Ioffe, V. B. Geshkenbein, M. V. Feigel’man, A. L. Fauchere, and G. Blatter, Nature 398, 679 (1999); CrossRef Google Scholar
26. A. Yu. Kitaev, preprint quant-ph/9707021 at xxx.lanl.gov, (1997). Google Scholar
27. G. Blatter, V. B. Geshkenbein, and L. B. Ioffe, Phys. Rev. B 63, 174511 (2001). CrossRef Google Scholar
28. A. Wallraff, A. Lukashenko, J. Lisenfeld, A. Kemp, M. V. Fistul, Y. Koval, and A. V. Ustinov, Nature 425, 155 (2003). CrossRef Google Scholar
29. A. Kemp, A. Wallraff, and A. V. Ustinov, Phys. Status Solidi 233, 472 (2002). CrossRef Google Scholar
30. T. Bauch, F. Lombardi, F. Tafuri, G. Rotoli, A. Barone, P. Delsing, and T. Cleason, Phys. Rev. Lett. 94, 087003 (2005). CrossRef Google Scholar
31. T. Bauch, T. Lindström, F. Tafuri, G. Rotoli, P. Delsing, T. Claeson, and F. Lombardi, Science 311, 5757 (2006). CrossRef Google Scholar
32. Y. V. Fominov, A. A. Golubov, and M. Y. Kupriyanov, JETP Lett. 77, 587 (2003). CrossRef Google Scholar
33. M. H. S. Amin and A. Y. Smirnov, Phys. Rev. Lett. 92, 017001 (2004). CrossRef Google Scholar
34. S. Kawabata, S. Kashiwaya, Y. Asano, and Y. Tanaka, Phys. Rev. B 70, 132505 (2004). CrossRef Google Scholar
35. S. Kawabata, S. Kashiwaya, Y. Asano, and Y. Tanaka, Phys. Rev. B 72, 052506 (2005); CrossRef Google Scholar
36. H. Hilgenkamp and J. Mannhart, Rev. Mod. Phys. 74, 485 (2002). CrossRef Google Scholar
37. F. Tafuri and J. R. Kirtley, Rep. Prog. Phys. 68, 2573 (2005). CrossRef Google Scholar
38. K. Inomata, S. Sato, K. Nakajima, A. Tanaka, Y. Takano, H. B. Wang, M. Nagao, H. Hatano, and S. Kawabata, Phys. Rev. Lett. 95, 107005 (2005). CrossRef Google Scholar
39. X. Y. Jin, J. Lisenfeld, Y. Koval, A. Lukashenko, A. V. Ustinov, and P. Mueller, Phys. Rev. Lett. 96, 177003 (2006). CrossRef Google Scholar
40. F. Tafuri, F. Miletto Granozio, F. Carillo, A. Di Chiara, K. Verbist, and G. Van Tendeloo, Phys. Rev. B 59, 11523 (1999). CrossRef Google Scholar
41. F. Lombardi, F. Tafuri, F. Ricci, F. Miletto Granozio, A. Barone, G. Testa, E. Sarnelli, J. R. Kirtley, and C. C. Tsuei, Phys. Rev. Lett. 89, 207001 (2002). CrossRef Google Scholar
42. F. Miletto Granozio, U. Scotti di Uccio, F. Lombardi, F. Ricci, F. Bevilacqua, G. Ausanio, F. Carillo, and F. Tafuri, Phys. Rev. B 67, 184506 (2003). CrossRef Google Scholar
43. F. Tafuri, J. R. Kirtley, F. Lombardi, and F. Miletto Granozio, Phys. Rev. B 67, 174516 (2003). CrossRef Google Scholar
44. C.-R. Hu, Phys. Rev. Lett. 72, 1526 (1994); CrossRef Google Scholar
45. E. Ilichev, V. Zakosarenko, R. P. J. Ijsselsteijn, H. E. Hoenig, V. Schultze, H. G. Meyer, M. Grajcar, and R. Hlubina, Phys. Rev. B 60, 3096 (1999); CrossRef Google Scholar
46. The dynamics of a JJ can be described by assuming the presence of both first and second harmonic components in the CPR (higher harmonics can be neglected because of low junction barrier transparency). Here I=I1(sinϕ−asin2ϕ) where a=I2∕I1, and I2 and I1 are the second and first harmonic components. For a given value of a, the dynamics is equivalent47 to that of a particle of mass mφ moving in a washboard potential U(a)=−(I1Φ0∕2π)((ICO∕I1)γϕ+cos−(a∕2)cos2ϕ), where E1=I1Φ0∕2π is the first harmonic of the Josephson energy and Φ0 is the quantum of flux. The normalized bias current γ=I∕IC0 determines the tilt of the potential, where ICO=I1max(sinϕ−asin2ϕ) is the maximum critical current of the JJ. For zero bias and a>0.5 the potential has the shape of a double well. When 0.5<a<2 the phase will always undergo a transition into the running (moving) state from the lower lying well of the tilted double-welled washboard potential; this can be confirmed by numerical simulations of the Langevin equation of motion. More details can be found in A. Ya. Tzalenchuk, T. Lindström, S. A. Charlebois, E. A. Stepantsov, Z. Ivanov, and A. M. Zagoskin, Phys. Rev. B 68, 100501 (2003). Google Scholar
47. W. C. Stewart, Appl. Phys. Lett. 12, 277 (1968); CrossRef Google Scholar
48. S. Kawabata, T. Bauch, and T. Kato, Phys. Rev. B 80, 174513 (2009). CrossRef Google Scholar
49. L. D. Jackel, J. P. Gordon, E. L. Hu, R. E. Howard, L. A. Fetter, D. M. Tennant, R. W. Epworth, and J. Kurkijärvi, Phys. Rev. Lett. 47, 697 (1981). CrossRef Google Scholar
50. F. Balestro, J. Claudon, J. P. Pekola, and O. Buisson, Phys. Rev. Lett. 91, 158301 (2003). CrossRef Google Scholar
51. G. Rotoli, T. Bauch, T. Lindström, D. Stornaiuolo, F. Tafuri, and F. Lombardi, Phys. Rev. B 75, 144501 (2007). CrossRef Google Scholar
52. X. G. Wen and P. A. Lee, Phys. Rev. Lett. 80, 2193 (1998). CrossRef Google Scholar
53. A. Ya. Tzalenchuk, T. Lindström, S. A. Charlebois, E. A. Stepantsov, Z. Ivanov, and A. M. Zagoskin, Phys. Rev. B 68, 100501 (2003). CrossRef Google Scholar
54. E. Il’ichev, M. Grajcar, R. Hlubina, R. P. J. IJsselsteijn, H. E. Hoenig, H.-G. Meyer, A. Golubov, M. H. S. Amin, A. M. Zagoskin, A. N. Omelyanchouk, and M. Yu. Kupriyanov, Phys. Rev. Lett. 86, 5369 (2001). CrossRef Google Scholar
55. G. Testa, A. Monaco, E. Esposito, E. Sarnelli, D. J. Kang, S. H. Mennema, E. J. Tarte, and M. G. Blamire, Appl. Phys. Lett. 85, 1202 (2004); CrossRef Google Scholar
56. D. Stornaiuolo, G. Rotoli, K. Cedergen, T. Bauch, F. Lombardi, and F. Tafuri, to be published in J. Appl. Phys. (2010); D. Stornaiuolo, E. Gambale, T. Bauch, D. Born, K. Cedergren, D. Dalena, A. Barone, A. Tagliacozzo, F. Lombardi, and F. Tafuri, Physica C 468, 310 (2008). CrossRef Google Scholar
57. G. Papari, F. Carillo, D. Born, L. Bartoloni, E. Gambale, D. Stornaiuolo, P. Pingue, F. Beltram, and F. Tafuri, IEEE Trans. Appl. Supercond. 19, 183 (2009). CrossRef Google Scholar
58. F. Carillo, G. Papari, D. Stornaiuolo, D. Born, D. Montemurro, P. Pingue, F. Beltram, and F. Tafuri, Phys. Rev. B 81, 054505 (2010). CrossRef Google Scholar
59. A. Tagliacozzo, D. Born, D. Stornaiuolo, E. Gambale, D. Dalena, F. Lombardi, A. Barone, B. L. Altshuler, and F. Tafuri, Phys. Rev. B 75, 012507 (2007). CrossRef Google Scholar
60. A. Tagliacozzo, F. Tafuri, E. Gambale, B. Jouault, D. Born, P. Lucignano, D. Stornaiuolo, F. Lombardi, A. Barone, and B. L. Altshuler, Phys. Rev. B 79, 024501 (2009). CrossRef Google Scholar
61. B. L. Altshuler and A. G. Aronov, in: Electron-Electron Interaction in Disordered Systems, A. L. Efros and M. Pollak Elsevier (eds.), Amsterdam (1985); P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985); CrossRef Google Scholar
62. Y. Imry, Introduction to Mesoscopic Physics, Oxford University Press (1997). Google Scholar
63. N. Gedik, J. Orenstein, R. Liang, D. A. Bonn, and W. N. Hardy, Science 300, 1410 (2003). CrossRef Google Scholar